Что такое лантаноиды в химии

Что такое лантаноиды в химии

Лантаноиды (от лантан и греч. eidos — образ, вид), лантаниды, семейство из 14 химических элементов с атомными номерами от 58 до 71, расположенных в шестом периоде системы Менделеева вслед за лантаном (табл. у. Лантаноиды и сходные с ними элементы скандий, иттрий и лантан образуют группу редкоземельных элементе в (в литературе ее обозначают сокращенно РЗЭ). Такое название объясняется тем, что все эти элементы встречаются редко и дают тугоплавкие, нерастворимые в воде оксиды, по старинной терминологии, — "земли". Редкоземельные элементы входят в побочную подгруппу III группы периодической системы.

По химическим свойствам Лантаноиды весьма сходны между собой, что объясняется строением электронных оболочек их атомов: по мере увеличения заряда ядра структура двух внешних электронных оболочек не меняется, так как происходит заполнение электронами 3-й снаружи оболочки — глубоколежащего 4f-ypoвня. Максимально возможное число электронов на f-уровне равно 14, что определяет число элементов семейства Лантаноиды. Лантаноиды подразделяются на 2 подгруппы: цериевую, включающую церий Ce, празеодим Pг, неодим Nd, прометий Pm, самарий Sm, европий Eu, и иттриевую, включающую гадолиний Gd, тербий Tb, диспрозий Dy, гольмий Но, эрбий Er, тулий Tm, иттербий Yb, лютеций Lu. Это деление обусловлено периодичностью изменения некоторых свойств внутри семейства Лантаноидов; названия подгрупп возникли исторически.

Историческая справка. В 1788 году в шведском селении Иттербю был найден минерал иттербит (позднее переименованный в гадолинит). В нем Ю. Гадолин обнаружил в 1794 году новую "землю", названную иттриевой. В 1803 году И. Я. Берцелиус и В. Гизингер (1766-1852) и независимо от них М. Клапрот (1743-1817) в "тяжелом камне из Бастноса" открыли цериевую "землю" (названную по малой планете Церере). Первоначально обе эти "земли" считались оксидами неизвестных прежде металлов — иттрия и церия. В 1843 году швед, химик К. Г. Мосандер (1797- 1858) разложил иттриевую "землю" на собственно иттриевую, эрбиевую и тер- биевую (все три названия — от Иттербю). Ж. Маринъяк (1878) выделил из эрбиевой "земли" еще иттербиевую, а шведский химик П. Т. Клеве (1879) — гольмиевую (от Holmia — латинское название Стокгольма) и тулиевую (от Thule — древнегреческого названия стран, лежащих на Крайнем Севере). В 1886 году П. Э. Лекок де Буабодран разделил гольмиевую "землю" на собственно гольмиевую и диспрозиевую (от греч. dysprositos — труднодоступный). В 1907 году французский химик Ж. Урбен (1872-1938) нашел в иттербиевой "земле" лютециевую (от Lutetia — латинское название Парижа). То же самое повторилось и с цериевой "землей". В 1839-41 годах Мосандер разложил ее на лантановую (от греч. lanthano — скрываюсь), дидимовую (от греч. didymos — близнец) и собственно цериевую "земли". Лекок де Буабодран, исследуя дидимовую "землю", полученную из уральского минерала самарскита [назв. так в 1847 году Генрихом Розе (1795-1864) в честь начальника штаба Корпуса горных инженеров В. Е. Самарского-Быховца (1803-70), от которого Розе получил значительное количество этого минерала], выделил из нее в 1879 году самариевую "землю", а в 1886 — гадолиниевую (по имени Гадолина); она оказалась тождественной с "землей", которую Мариньяк открыл в 1880 в самарските. В 1885 австрийский химик К. Ауэр фон Вельсбах (1858-1929) разделил дидимовую "землю" на празеодимовую (от греч. prasios — светло-зеленый) и неодимовую (от греч. neos — новый). В 1901 году французский химик Э. Демарсе (1852-1904) разделил самариевую "землю" на собственно самариевую и европиевую.

Так, к первым годам 20 века были открыты все Лантаноиды, за исключением радиоактивного элемента с атомным номером 61, который в природе не встречается. Его получили только в 1947 американские физики Дж. Марийский, Л. Гленденин и Ч. Кориелл из осколков деления урана в ядерном реакторе и назвали прометием (от имени Прометея).

Хотя открытие Лантаноидов было завершено в начале 20 века, многие из них не были ни выделены в достаточно чистом состоянии, ни подробно изучены. Современные эффективные методы разделения позволяют получать и производить в чистом виде и соединения Лантаноидов, и сами металлы.

Распространение в природе. Суммарное содержание лантана и Лантаноидов в земной коре составляет 1,78·10 -2 % по массе, причем кларки у Лантаноиды с четными атомными номерами больше, чем у соседних нечетных. Лантаноиды — характерные элементы земной коры ; в породах мантии, в каменных метеоритах их мало. При магматических процессах Лантаноиды накапливаются в гранитоидах и особенно в щелочных породах. Известно 33 минерала церия и 9 лантана, остальные Лантаноиды входят как изоморфные примеси в кристаллическую решетку других минералов, преимущественно редкоземельных. Во многих минералах Лантаноиды изоморфно замещают Са, U, Th и другие. В биосфере Лантаноиды малоподвижны, с чем связано накопление их в россыпях. Содержание Лантаноидов в природных водах и организмах ничтожно. Их водная и биогенная миграция изучена плохо. Известны гидротермальные месторождения фосфатов, фторкарбонатов и фторидов Лантаноидов, однако наибольшее промышленное значение имеют комплексные месторождения, связанные со щелочными магматическими породами (например, нефелиновые сиениты Кольского полуострова) и карбонатитами, а также месторождения осадочных фосфоритов, кора выветривания щелочных пород, прибрежно-морские и аллювиальные россыпи ксенотима и монацита.

Физические свойства. Лантаноиды — металлы серебристо-белого цвета (некоторые слегка желтоваты, например Рг и Nd). Кристаллическая структура большинства Лантаноидов — гексагональная плотноупакованная. Исключение составляют γ-Ce и α-Yb (кубическая гранецентрированная), Sm (ромбоэдрическая), Eu — кубическая объемноцентрированная. То обстоятельство, что при переходе от Се к Lu число электронов на двух внешних оболочках, как правило, не меняется, а положительный заряд ядра постепенно возрастает, вызывает более сильное притяжение электронов к ядру и приводит к так называемому лантаноидному сжатию; у нейтральных атомов Лантаноидов и ионов одинаковой валентности при увеличении атомного номера радиусы несколько уменьшаются. Температуры плавления у элементов подгруппы церия значительно ниже, чем у элементов подгруппы иттрия.

Лантаноиды высокой чистоты пластичны и легко поддаются деформации (ковке, прокатке). Механические свойства сильно зависят от содержания примесей, особенно кислорода, серы, азота и углерода. Значения предела прочности и модуля упругости металлов иттриевой подгруппы (за исключением Yb) выше, чем для цериевой. Все Лантаноиды, за исключением La и Lu, обладают при температуpax выше комнатной сильным парамагнетизмом, причиной которого является наличие у этих элементов нескомпенсированных в 4f-подоболочках спиновых и орбитальных магнитных моментов. В области низких температур большинство Лантаноидов цериевой подгруппы (Nd, Pr, Sm) находится в антиферромагнитном состоянии, а Лантаноиды иттриевой подгруппы (Tb, Dy, Ho, Er и Tm) при очень низких температуpax — в ферримагнитном состоянии, а при более высоких температуpax переходят в так называемых геликоидальное антиферромагнитное состояние. Gd при всех температуpax ниже 293 К (т. е. до точки Кюри) находится в ферромагнитном состоянии.

Металлы Tb, Dy, Ho, Er и Tm обладают большими величинами намагниченности насыщения, огромными значениями энергии магнитной анизотропии и магнитострикции, что позволяет на основе этих металлов создавать магнитные материалы (сплавы, ферриты, халькогениды и другие) с уникальными свойствами. α-La становится сверхпроводником при 4,9 К, β-La при 5,85 К.

Атомный номер, атомная масса и некоторые другие свойства элементов семейства лантаноидов

Читайте также:  Утепление входной металлической двери мастер

Содержание

Стр. №
  • Введение
  • 3
  • Общие свойства
  • 4
  • Характеристика отдельных элементов и их применение
  • 9
    3.1 Церий 9
    3.2 Празеодим 11
    3.3 Неодим 12
    3.4 Прометий 13
    3.5 Самарий 14
    3.6 Европий 17
    3.7 Гадолиний 18
    3.8 Тербий 20
    3.9 Диспрозий 21
    3.10 Гольмий 22
    3.11 Эрбий 23
    3.12 Тулий 24
    3.13 Иттербий 25
    3.14 Лютеций 26
  • Список использованных источников
  • 27

    ВВЕДЕНИЕ

    Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение лантаноиды.

    На основе лантаноидов получают многие уникальные материалы, которые находят широкое применение в различных областях науки и техники. Например, лантаноиды используют как добавки к стали и в сплавах с другими металлами, в производстве материалов, адсорбирующих водород (например, MmNi 5 ), как добавки к ядерным материалам, в качестве пирофорных материалов (например порошкообразный Се ), в специальной керамике, оптических стеклах (стекла для телевизионных экранов), в производстве катализаторов для утилизации выхлопных газов, а также в получении магнитных материалов (например, (Nd1-x Dyx )15 Fe77 B8 или (Nd1-x Dyx )15 Fe76 B8 ) и так далее.

    Все вышеперечисленное – лишь небольшая часть из списка областей применения лантаноидов. Развитие высоких технологий все более и более вовлекает использование лантаноидов, степень чистоты которых должна быть очень высока. В этом отношении не будет преувеличением отнести лантаноиды и их сплавы к материалам XXI века.

    ОБЩИЕ СВОЙСТВА ЛАНТАНОИДОВ

    Лантаноиды – это 14 элементов, следующих за лантаном, у которых к электронной конфигурации лантана последовательно добавляются 14 4f-электронов. В табл. 2.1 приведены электронные конфигурации лантаноидов и их наиболее устойчивые степени окисления. Общая электронная конфигурация лантаноидов – 4f 2–14 5d 0–1 6s 2 .

    У церия на 4f-уровне находятся два электрона – один за счет увеличения порядкового номера по сравнению с лантаном на единицу, а другой переходит с 5d-уровня на 4f. До гадолиния происходит последовательное увеличение числа электронов на 4f -уровне, а уровень 5d остается незанятым. У гадолиния дополнительный электрон занимает 5d-уровень, давая электронную конфигурацию 4f 7 5d 1 6s 2 , а у следующего за гадолинием тербия происходит, аналогично церию, переход 5d -электрона на 4f-уровень (4f 9 6s 2 ). Далее до иттербия наблюдается монотонное увеличение числа электронов до 4f 14 , а у завершающего ряд лютеция вновь появляется 5d-электрон (4f 14 5d 1 6s 2 ).

    Электронная конфигурация и степени окисления лантаноидов
    Элемент Электронная конфигурация Степень окисления
    Церий Ce 4f 2 6s 2 +3, +4
    Празеодим Pr 4f 3 6s 2 +3, +4
    Неодим Nd 4f 4 6s 2 +3
    Прометий Pm 4f 5 6s 2 +3
    Самарий Sm 4f 6 6s 2 +2, +3
    Европий Eu 4f 7 6s 2 +2, +3
    Гадолиний Gd 4f 7 5d 1 6s 2 +3
    Тербий Tb 4f 9 6s 2 +3, +4
    Диспрозий Dy 4f 10 6s 2 +3, +4
    Гольмий Ho 4f 11 6s 2 +3
    Эрбий Er 4f 12 6s 2 +3
    Тулий Tm 4f 13 6s 2 +2, +3
    Иттербий Yb 4f 14 6s 2 +2, +3
    Лютеций Lu 4f 14 5d 1 6s 2 +3

    Периодический характер заполнения 4f-орбиталей сначала по одному, а потом по два электрона предопределяет внутреннюю периодичность свойств лантаноидов. Периодически изменяются металлические радиусы, степени окисления, температуры плавления и кипения, величины магнитных моментов, окраска и другие свойства (Рис. 2.1).

    Вторичная периодическая зависимость металлических радиусов, температуры плавления и магнитного момента

    Участие 4f-электронов в образовании химической связи обусловлено предварительным возбуждением на уровень 5d. Энергия возбуждения одного электрона невелика, поэтому обычно лантаноиды проявляют степень окисления +3. Однако некоторые из них проявляют так называемые аномальные степени окисления – +2, +4. Эти состояния окисления связывают с образованием наиболее устойчивых электронных конфигураций 4f 0 , 4f 7 , 4f 14 . Так, Ce и Tb приобретают конфигурации f 0 и f 7 , переходя в состояние окисления +4, тогда как Eu и Yb имеют соответственно конфигурации – f 7 и f 14 в состоянии окисления +2. Однако существование Pr (IV), Sm (II), Dy (IV) и Tm (II) свидетельствует об относительности критерия особой устойчивости электронных конфигураций 4f 0 , 4f 7 и 4f 14 . Как и для d-элементов, стабильность состояния окисления наряду с этим фактором характеризуется термодинамическими параметрами реального соединения.

    Аномальные валентности лантаноидов исследовал и объяснил немецкий химик Вильгельм Клемм. По рентгеновским спектрам он определил основные параметры их кристаллов и размеры атомов. На кривой атомных радиусов явно выражены максимумы (европий, иттербий) и менее резко — минимумы (церий, тербий) (Рис 2.1). Элементы с большими атомными радиусами крепче удерживают электроны и потому бывают лишь трех — или даже двухвалентными. В "малообъемных" атомах, напротив, один из "внутренних" электронов заключён в оболочке недостаточно прочно — потому атомы церия, празеодима и тербия могут быть четырехвалентными.

    В работах Клемма было найдено и физическое обоснование давно сложившегося разделения лантаноидов на две подгруппы — церия и тербия. В первую входят лантан и лантаноиды от церия до гадолиния, во вторую — лантаноиды от тербия до лютеция. Отличие между элементами двух этих групп — в знаке спинов у электронов, заполняющих главную для лантаноидов четвертую оболочку. Спины у элементов подгруппы церия имеют один и тот же знак; у элементов подгруппы тербия половина электронов имеет спины одного знака, а половина — другого.

    Ограниченная возможность возбуждения 4f-электронов определяет сходство химических свойств лантаноидов в одинаковых степенях окисления. Основные изменения в свойствах лантаноидов являются следствием f-сжатия, то есть уменьшения эффективных радиусов атомов и ионов с увеличением порядкового номера.

    В свободном состоянии лантаноиды – весьма активные металлы. (В ряду напряжений они находятся значительно левее водорода), электродные потенциалы лантаноидов составляют около –2,4 В). Поэтому все лантаноиды взаимодействуют с водой с выделением водорода:

    Активно происходит и взаимодействие лантаноидов с кислотами, однако, в HF и H3 PO4 лантаноиды устойчивы т.к. покрываются пленкой нерастворимых солей. Соединения лантаноидов со степенью окисления IV малостойки и проявляют сильные окислительные свойства (устойчивы соединения Ce и Tb):

    а соединения со степенью окисления II (Eu, Sm, Yb) – восстановительные, причем окисляются даже водой:

    Лантаноиды очень реакционноспособны и легко взаимодействуют со многими элементами периодической системы: в кислороде сгорают при 200–400 °С с образованием Э2 O3 , а в атмосфере азота при 750–1000 °С образуют нитриды. Церий в порошкообразном состоянии легко воспламеняется на воздухе, поэтому его используют при изготовлении кремней для зажигалок. Лантаноиды взаимодействуют с галогенами, серой, углеродом, кремнием и фосфором. С большинством металлов лантаноиды дают сплавы. При этом часто образуются интерметаллические соединения. (Рис. 2.2)

    Диаграмма плавкости системы Al – Gd

    Химическая активность элементов в ряду Ce–Lu несколько уменьшается из-за уменьшения их радиусов.

    С кислородом все лантаноиды образуют основные оксиды типа Э2 O3 , характеризующиеся высокими энтальпиями и энергиями Гиббса образования (∆G°f ,298 ≈ -1600 кДж/моль) и являющиеся химически и термически устойчивыми; так, La2 O3 плавится при температуре 2000 °С, а CeO2 – около 2500 °С. Самарий, европий и иттербий, кроме оксидов Э2 O3 , образуют также монооксиды EuO, SmO, YbO. Церий легко образует оксид CeO2 . Оксиды лантаноидов в воде нерастворимы, но энергично взаимодействуют с ней, образуя гидроксиды:

    Читайте также:  Как вырастить здоровый лук

    С растворами щелочей оксиды лантаноидов (III) не взаимодействуют, однако получены кристаллические соединения состава LiЭО2 и NaЭО2 , что свидетельствует об амфотерности Э2 О3 . При прокаливании оксиды Э2 О3 , подобно Al2 О3 теряют химическую активность.

    Гидриды лантаноидов образуются при взаимодействии простых веществ при нагревании (300-400°С). Все лантаноиды образуют гидриды состава ЭН2 , и, за исключением Euи Ybсоединения, приближающиеся по составу к ЭH3 . Особенности образования гидридов европием и иттербием, по-видимому, связаны с устойчивостью 4f 7 — и 4f 14 — конфигураций. Гидриды ЭН2 построены по типу флюорита и имеют солеобразный характер. В большей мере, ЭН2 напоминают ионные гидриды щелочно-земельных металлов, а с гидридами d-элементов имеют мало общего. Водородные соединения лантаноидов химически весьма активны и энергично взаимодействуют с кислородом, галогенами и другими сильными окислителями. Особенно реакционноспособны соединения типа ЭН3 .

    Каждый из химических элементов, представленный в оболочках Земли: атмосфере, литосфере и гидросфере — может служить ярким примером, подтверждающим фундаментальное значение атомно-молекулярного учения и периодического закона. Они были сформулированы корифеями естествознания – русскими учеными М. В. Ломоносовым и Д. И. Менделеевым. Лантаноиды и актиноиды – это два семейства, которые содержат по 14 химических элементов, а также сами металлы – лантан и актиний. Их свойства — как физические, так и химические — будут рассмотрены нами в данной работе. Кроме этого, мы установим, как положение в периодической системе водорода, лантаноидов, актиноидов зависит от строения электронных орбиталей их атомов.

    История открытия

    В конце 18 столетия Ю. Гадолином было получено первое соединение из группы редкоземельных металлов – оксид иттрия. До начала 20 столетия благодаря исследованиям Г. Мозли в химии стало известно о существовании группы металлов. Они располагались в периодической системе между лантаном и гафнием. Еще один химический элемент – актиний, подобно лантану, образует семейство из 14 радиоактивных химических элементов, названных актиноидами. Их открытие в науке произошло, начиная с 1879 года до середины 20 века. Лантаноиды и актиноиды имеют достаточно много черт сходства как в физических, так и в химических свойствах. Это можно объяснить расположением электронов в атомах этих металлов, которые находятся на энергетических уровнях, а именно для лантаноидов это четвертый уровень f-подуровень, а для актиноидов — пятый уровень f-подуровень. Далее мы рассмотрим электронные оболочки атомов вышеназванных металлов более подробно.

    Строение внутренних переходных элементов в свете атомно-молекулярного учения

    Гениальное открытие строения химических веществ М. В. Ломоносова явилось основой для дальнейшего изучения электронных оболочек атомов. Резерфордовская модель строения элементарной частицы химического элемента, исследования М. Планка, Ф. Гунда позволили ученым-химикам найти правильное объяснение существующим закономерностям периодического изменения физических и химических свойств, которыми характеризуются лантаноиды и актиноиды. Нельзя обойти вниманием и важнейшую роль периодического закона Д. И. Менделеева в изучении строения атомов переходных элементов. Остановимся на этом вопросе более детально.

    Место внутренних переходных элементов в периодической системе Д. И. Менделеева

    В третьей группе шестого – большего периода — за лантаном находится семейство металлов, расположенных от церия и до лютеция включительно. У атома лантана 4f-подуровень пустой, а у лютеция полностью наполнен 14-ю электронами. У элементов, расположенных между ними, идет постепенное заполнение f-орбиталей. В семействе актиноидов – от тория до лоуренсия — соблюдается тот же принцип накопления отрицательно заряженных частиц с единственным отличием: заполнение электронами происходит на 5f-подуровне. Строение же внешнего энергетического уровня и количество отрицательных частиц на нем (равное двум) у всех вышеперечисленных металлов одинаково. Данный факт отвечает на вопрос о том, почему лантаноиды и актиноиды, названные внутренними переходными элементами, имеют много черт сходства.

    В некоторых источниках химической литературы представителей обоих семейств объединяют во вторые побочные подгруппы. В них содержится по два металла из каждого семейства. В короткой форме периодической системы химических элементов Д.И Менделеева представители этих семейств выделены из самой таблицы и расположены отдельными рядами. Поэтому положение лантаноидов и актиноидов в периодической системе отвечает общему плану строения атомов и периодичности заполнения электронами внутренних уровней, а присутствие одинаковых степеней окисления послужило причиной объединения внутренних переходных металлов в общие группы. В них химические элементы обладают признаками и свойствами, равнозначными лантану или актинию. Вот почему лантаноиды и актиноиды вынесены из таблицы химических элементов.

    Как электронная конфигурация f-подуровня влияет на свойства металлов

    Как мы уже говорили ранее, положение лантаноидов и актиноидов в периодической системе напрямую определяет их физические и химические характеристики. Так, ионы церия, гадолиния и других элементов семейства лантаноидов имеют высокие магнитные моменты, что связано с особенностями строения f-подуровня. Это позволило использовать металлы в качестве легирующих добавок для получения полупроводников с магнитными свойствами. Сульфиды элементов семейства актиния (например, сульфид протактиния, тория) в составе своих молекул имеют смешанный тип химической связи: ионно-ковалентный или ковалентно-металлический. Эта особенность строения привела к появлению нового физико-химического свойства и послужила ответом на вопрос о том, почему лантаноиды и актиноиды обладают люминесцентными свойствами. Например, образец актиния серебристого цвета в темноте светится голубоватым свечением. Это объясняется действием на ионы металлов электрического тока, фотонов света, под влиянием которых происходит возбуждение атомов, а электроны в них «перескакивают» на более высокие энергетические уровни и затем возвращаются на свои стационарные орбиты. Именно по этой причине лантаноиды и актиноиды относятся к люминофорам.

    Последствия уменьшения ионных радиусов атомов

    У лантана и актиния, как и у элементов из их семейств, наблюдается монотонное снижение величины показателей радиусов ионов металлов. В химии в таких случаях принято говорить о лантаноидном и актиноидном сжатии. В химии установлена следующая закономерность: с увеличением заряда ядра атомов, в случае если элементы относятся к одному и тому же периоду, их радиусы уменьшаются. Объяснить это можно следующим образом: у таких металлов, как церий, празеодим, неодим, количество энергетических уровней в их атомах неизменно и равно шести. Однако заряды ядер соответственно увеличиваются на единицу и составляют +58, +59, +60. Это значит, что возрастает сила притяжения электронов внутренних оболочек к положительно заряженному ядру. Как следствие происходит уменьшение радиусов атомов. В ионных соединениях металлов с увеличением порядкового номера ионные радиусы также уменьшаются. Аналогичные изменения наблюдаются и у элементов семейства актиния. Вот почему лантаноиды и актиноиды называют близнецами. Уменьшение радиусов ионов приводит в первую очередь к ослаблению основных свойств гидроксидов Се(ОН)3, Pr(OH)3, а основание лютеция уже проявляет амфотерные свойства.

    К неожиданным результатам приводит заполнение 4f-подуровня неспаренными электронами до половины орбиталей у атома европия. У него радиус атома не уменьшается, а, наоборот, увеличивается. У следующего за ним в ряду лантаноидов гадолиния на 5d-подуровне появляется один электрон 4f-подуровня аналогично Eu. Такое строение вызывает скачкообразное уменьшение радиуса атома гадолиния. Подобное явление наблюдается в паре иттербий – лютеций. У первого элемента радиус атома большой по причине полного заполнения 4f-подуровня, а у лютеция он скачкообразно уменьшается, так как на 5d-подуровне наблюдается появление электронов. У актиния и других радиоактивных элементов этого семейства радиусы их атомов и ионов изменяются не монотонно, а, так же как и у лантаноидов, скачкообразно. Таким образом, лантаноиды и актиноиды являются элементами, у которых свойства их соединений коррелятивно зависят от ионного радиуса и строения электронных оболочек атомов.

    Читайте также:  Температура хранения кабачков и тыквы

    Валентные состояния

    Лантаноиды и актиноиды являются элементами, чьи характеристики достаточно сходны. В частности, это касается их степеней окисления в ионах и валентности атомов. Например, торий и протактиний, проявляющие валентность, равную трём, в соединениях Th(OH)3, PaCl3, ThF3, Pa2(CO3)3. Все эти вещества являются нерастворимыми и имеют те же химические свойства, что и металлы из семейства лантана: церий, празеодим, неодим и т. д. Лантаноиды в этих соединениях также будут трехвалентными. Эти примеры еще раз доказывают нам правильность утверждения, что лантаноиды и актиноиды – близнецы. Они обладают сходными физическими и химическими свойствами. Это можно объяснить прежде всего строением электронных орбиталей у атомов обоих семейств внутренних переходных элементов.

    Металлические свойства

    Все представители обеих групп являются металлами, у которых достраиваются 4f-, 5f-, а также d-подуровни. Лантан и элементы его семейства называют редкоземельными. Их физические и химические характеристики настолько близки, что по отдельности в лабораторных условиях они разделяются с большим трудом. Проявляя чаще всего степень окисления +3, элементы ряда лантана имеют много сходных черт со щелочноземельными металлами (барием, кальцием, стронцием). Актиноиды также являются чрезвычайно активными металлами, к тому же еще и радиоактивными.

    Особенности строения лантаноидов и актиноидов касаются и таких свойств, как, например, пирофорность в мелкодисперсном состоянии. Наблюдается также уменьшение размеров гранецентрированных кристаллических решеток металлов. Добавим, что все химические элементы обоих семейств – это металлы с серебристым блеском, из-за высокой реакционной способности быстро темнеющие на воздухе. Они покрываются пленкой соответствующего оксида, защищающей от дальнейшего окисления. Все элементы достаточно тугоплавки, за исключением нептуния и плутония, температура плавления которых значительно ниже 1000 °С.

    Характерные химические реакции

    Как было отмечено ранее, лантаноиды и актиноиды являются химически активными металлами. Так, лантан, церий и другие элементы семейства легко соединяются с простыми веществами – галогенами, а также с фосфором, углеродом. Лантаноиды могут также взаимодействовать как с монооксидом углерода, так и с углекислым газом. Они также способны разлагать воду. Кроме простых солей, например таких как SeCl3 или PrF3, они образуют двойные соли. В аналитической химии важное место занимают реакции металлов-лантаноидов с аминоуксусной и лимонной кислотами. Образующиеся в результате таких процессов комплексные соединения применяются для разделения смеси лантаноидов, например в рудах.

    При взаимодействии с нитратной, хлоридной и сульфатной кислотами, металлы образуют соответствующие соли. Они хорошо растворимы в воде и легко способны к образованию кристаллогидратов. Нужно отметить, что водные растворы солей лантаноидов окрашены, что объясняется присутствием в них соответствующих ионов. Растворы солей самария или празеодима зеленого цвета, неодима – красно-фиолетового, прометия и европия – розового. Так как ионы со степенью окисления +3 окрашены, это используется в аналитической химии для распознавания ионов металлов-лантаноидов (так называемые качественные реакции). Для этой же цели применяют еще и такие методы химического анализа, как дробная кристаллизация и ионообменная хроматография.

    У актиноидов можно выделить две группы элементов. Это берклий, фермий, менделевий, нобелий, лоуренсий и уран, нептуний, плутоний, омереций. Химические свойства первой из них подобны лантану и металлам из его семейства. Элементы второй группы обладают очень похожими химическими характеристиками (практически идентичны друг другу). Все актиноиды быстро взаимодействуют с неметаллами: серой, азотом, углеродом. С кислородсодержащими легандами они образуют комплексные соединения. Как видим, металлы обоих семейств близки между собой по химическому поведению. Вот почему лантаноиды и актиноиды часто называют металлами-близнецами.

    Положение в периодической системе водорода, лантаноидов, актиноидов

    Нужно учитывать тот факт, что водород является достаточно реакционноспособным веществом. Он проявляет себя в зависимости от условий химической реакции: как восстановителем, так и окислителем. Именно поэтому в периодической системе водород располагается одновременно в главных подгруппах сразу двух групп.

    В первой водород играет роль восстановителя, как и щелочные металлы, расположенные здесь. Место водорода в 7-й группе наряду с элементами галогенами указывает на его восстановительную способность. В шестом периоде находится, как уже ранее было сказано, семейство лантаноидов, вынесенное в отдельный ряд для удобства и компактности таблицы. Седьмой период содержит группу радиоактивных элементов, по своим характеристикам подобным актинию. Актиноиды располагаются вне таблицы химических элементов Д.И Менделеева под рядом семейства лантана. Эти элементы наименее изучены, так как ядра их атомов очень неустойчивы по причине радиоактивности. Напомним, что лантаноиды и актиноиды относятся к элементам внутренним переходным, а их физико-химические характеристики очень близки между собой.

    Общие способы получения металлов в промышленности

    За исключением тория, протактиния и урана, которые добывают прямым путем из руд, остальные актиноиды можно получить путем облучения образцов металлического урана быстродвижущимися потоками нейтронов. В промышленных масштабах нептуний и плутоний добывают из отработанного топлива ядерных реакторов. Отметим, что получение актиноидов – это достаточно сложный и дорогостоящий процесс, основными методами которого являются ионный обмен и многостадийная экстракция. Лантаноиды, которые называют редкоземельными элементами, получают путем электролиза их хлоридов или фторидов. Чтобы добыть сверхчистые лантаноиды, используют металлотермический метод.

    Где применяют внутренние переходные элементы

    Спектр использования изучаемых нами металлов достаточно широк. Для семейства актиния – это, прежде всего, ядерное оружие и энергетика. Важное значение имеют актиноиды и в медицине, дефектоскопии, активационном анализе. Нельзя обойти вниманием применение лантаноидов и актиноидов в качестве источников захвата нейтронов в ядерных реакторах. Лантаноиды же применяют в качестве легирующих добавок к чугуну и стали, а также в производстве люминофоров.

    Распространение в природе

    Оксиды актиноидов и лантаноидов часто называют циркониевой, ториевой, иттриевой землями. Они являются основным источником для получения соответствующих металлов. Уран, как главный представитель актиноидов, находится в наружном слое литосферы в форме четырёх видов руд или минералов. Прежде всего, это урановая смолка, представляющая собой двуокись урана. В ней содержание металла самое высокое. Часто диоксиду урана сопутствуют радиевые месторождения (жилы). Они встречаются в Канаде, Франции, Заире. Комплексы ториевой и урановой руды часто содержат руды других ценных металлов, например золота или серебра.

    Запасами такого сырья богаты Россия, Южно-Африканская республика, Канада и Австралия. В некоторых осадочных породах содержится минерал карнотит. В его состав, кроме урана, входит еще и ванадий. Четвертый вид уранового сырья – это фосфатные руды и железоурановые сланцы. Их запасы находятся в Марокко, Швеции и США. В настоящее время перспективными считаются также залежи лигнитов и каменного угля, содержащие примеси урана. Их добывают в Испании, Чехии, а также в двух американских штатах – Северной и Южной Дакоте.

    Ссылка на основную публикацию
    Что садить после чеснока на следующий год
    Чеснок отпугивает не только вампиров, но и другие растения. Специалисты в области растениеводства уверены: получить удачный урожай чеснока и сохранить...
    Что можно приготовить из потемневших бананов
    Каждому из вас должна быть знакома ситуация, когда купленные в магазине бананы перезревают и темнеют в холодильнике или на столе....
    Что можно приготовить из репы рецепты
    Вкусные блюда из репы: 6 рецептов Репа в последнее время очень редко используется хозяйками в кулинарии. Однако это совершенно напрасно,...
    Что сажать в апреле в открытый грунт
    С наступлением апреля нужно определиться, что в первую очередь сжать на даче и в огороде. Это поможет правильно спланировать работу...
    Adblock detector